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1. Executive Summary 

The effort builds on and extends the work of the previous ONR-funded “Validation 
Coverage Toolkit for HSCB Models” project. The overall objectives of the research 
program are: 

 Help scientists create, analyze, refine, and validate rich scientific models 
 Help computational scientists verify the correctness of their implementations of 

those models 
 Help users of scientific models, including decision makers within the US Navy, to 

use those models correctly and with confidence 
 Use a combination of human-driven data visualization and analysis, automated 

data analysis, and machine learning to leverage human expertise in model 
building with automated analyses of complex models against large datasets 

Specific objectives for the current effort include: 

 Fluid temporal correlation analysis. Our objective is to design a new method 
for performing temporally fluid correlation analysis for temporal sets of data and 
implement the method as a new prototype component within the Model Analyst’s 
Toolkit (MAT) software application. 

 Automated suggestions for model construction and refinement. Our objective 
is to design and implement a prototype mechanism that learns from data how 
factors interact in non-trivial ways in scientific models.  

 Data validation and repair. Our objective is to design and implement a 
prototype capability to identify likely errors in data based on anomalies relative to 
historic data and to use models of historic data to offer suggested repairs. 

 System prototyping. Our objective is to incorporate all improvements into the 
MAT software application and make the resulting application available to the 
government and academic research community for use in scientific modeling 
projects. 

 Evaluation of applicability to multiple scientific domains. Our objective is to 
ensure (and demonstrate) that MAT can be applied to a wide range of scientific 
domains by identifying and building at least one neurological and/or physiological 
model and analyze the associated data with MAT, making any extensions to the 
MAT tool that are necessary to support the analysis of such a model. 

2. Overview of Problem and Technical Approach 

2.1. Summary of the Problem 

One of the most powerful things scientists can do is to create models that describe the 
world around us. Models help scientists organize their theories and suggest additional 
experiments to run. Validated models also help others in more practical applications. For 
instance, in the hands of military decision makers, human social cultural behavior 
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(HSCB) models can help predict instability and the socio-political effects of missions, 
whereas models of the human brain and mind can help educators and trainers create 
curricula that more effectively improve the knowledge, skills, and abilities of their pupils. 

While there are various software tools that are used by the scientific community to help 
them develop and analyze their models (e.g., Excel, R, Simulink, Matlab), they are 
largely so general in purpose (e.g., Excel, R) or so focused on computational models in 
particular (e.g., Simulink, Matlab), that they are not ideal for rapid model exploration or 
for use by non-computational scientists. They also largely ignore the problem of 
validating the models, especially when the models are positing causal claims as most 
interesting scientific models do. To address this gap, Charles River Analytics undertook 
the “Validation Coverage Toolkit for HSCB Models” project with ONR. Under this 
effort, we successfully designed, implemented, informally evaluated, and deployed a tool 
called the Model Analyst’s Toolkit (MAT), which focused on supporting social scientists 
to visualize and explore data, develop causal models, and validate those models against 
available data  (Neal Reilly, 2010; Neal Reilly, Pfeffer, Barnett et al., 2011, 2010). 

As part of the development of the MAT tool, we identified four important extensions to 
that research program that would further support the scientific modeling process: 

 Correlation analyses are still the standard way of identifying relationships 
between factors in a model, but correlations are fundamentally flawed as a tool for 
analyzing potentially causal or predictive relationships as they assume 
instantaneous effects. Even performing correlation analyses with a temporal 
offsets between streams of data is insufficient as the temporal gap between the 
causal or predictive event and the following event may not be the same every time 
(either because of variability in the system being modeled or because of 
variability introduced by a fixed sampling rate). What we need is a novel way of 
evaluating the true predictive power across streams of data that can deal with fluid 
offsets between changes in one stream of data and follow events in the other 
stream of data. 

 Modeling complex phenomena is a fundamentally difficult task. Human intuition 
and analysis is by far the most effective way of performing this task, but even 
humans can be overwhelmed by the complexity of modeling the systems they are 
studying (e.g., socio-political system, human neurophysiology). Automated tools, 
while not especially good at generating reasonable scientific hypotheses, are 
extremely good at processing large amounts of data. We believe there is an 
opportunity for computational systems to enhance human scientific inquiry. 
Under the “Validation Coverage Toolkit for HSCB Models” project, we 
demonstrated how automated tools could help human scientists to analyze and 
validate their models against data. We believe a similar approach can be used to 
help suggest modifications to the human-built models to make them better match 
the available data. To be useful, however, such automated analyses will need to be 
rich enough to suggest subtle data interactions that are most likely to be missed by 
the human scientist. For instance, correlations (especially correlations that take 
into account fluid temporal displacements) could be used to identify likely 
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relationships between streams of data, but such an approach would miss complex, 
non-linear relationships between interrelated factors that cannot be effectively 
analyzed with simple two-way correlations. For instance, if crime waves are 
associated with increases in unemployment or drops in police presence, that 
would be hard to identify with a correlation analysis. We need richer automated 
data analysis techniques that can extract complex, non-linear, multi-variable 
relationships between data if we are to effectively suggest model improvements to 
human scientists. 

 Even if a scientific model is sound, if the data sets provided as inputs to the model 
are unreliable, the results of the model are still suspect. And, unfortunately, data 
will often be wrong. For instance, HSCB surveys are notoriously unreliable and 
biased for a variety of reasons, and neurological and physiological data can be 
corrupted by broken or improperly used sensors. If it were possible to identify 
when data was unreliable and, ideally, even repair the data, then the models that 
are using the data could once again be effectively used. 

 The MAT tool we developed under the “Validation Coverage Toolkit for HSCB 
Models” project was focused primarily on assisting social scientists in the 
analysis, refinement, and validation of HSCB models. In parallel with that effort, 
however, we also took an opportunity to apply MAT to evaluating neurological 
and physiological data under the DARPA-funded CRANIUM (Cognitive 
Readiness Agents for Neural Imaging and Understanding Models) program. We 
discovered the generality of the MAT tool makes it potentially applicable to a 
great number of different scientific domains. MAT proved to be a useful, but 
peripheral tool, in CRANIUM. We believe MAT could be applied to a broader 
suite of scientific modeling problems than it has been so far. 

2.2. Summary of our Approach 

To address these identified gaps and opportunities, we extended MAT’s support for 
model development, analysis, refinement, and validation; enhancing MAT to analyze and 
repair data; and demonstrating MATs usefulness in additional scientific modeling 
domains. Our approach encompasses the following four areas, which correspond to the 
four gaps/opportunities identified in the previous section: 

 Temporally Fluid Correlation Analysis. We are designed new methods to 
perform Temporally Fluid Correlational Analysis on temporal sets of data, and we 
implemented the methods as a new component within the MAT software 
application. The version of MAT at the beginning of the new effort supported 
correlation analysis for temporally offset data; it shifts the two data streams being 
compared by a fixed offset that is based on the sampling rate of the data (i.e., data 
that is sampled annually will be shifted by one year at a time), performs a 
standard correlation on the shifted data, plots the correlation value against the 
amount of the offset, and then repeats the process for the next offset amount. If 
two data streams are shifted by a fixed offset (e.g., changes in one stream are 
always followed by a comparable value in the other stream after a fixed time), 
then this method will find that offset. Under the current effort, we expanded on 
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this capability to support fluid temporal shifts within the data streams. That is, we 
make it possible to identify when the temporal offset between the change in the 
first data stream and its effect in the second stream is not a static amount of time. 

 Automated suggestions for model construction and refinement. We designed 
and implemented a mechanism to learn how factors interact in non-trivial ways in 
scientific models. In particular, we developed a method for learning disjuncts, 
conjuncts, and negations. This mechanism starts with the model developed by the 
scientist user and make recommendations for possible adjustments to make it 
more complete by performing statistical data mining and machine learning.  

 Data validation and repair. Recognizing that data contains errors is plausible 
once we understand the relationships between data sets. That is, if we are able to 
develop models of the correlations between sets of data, then we can build 
systems that notice when these correlations do not hold in new data, indicating 
possible errors in data. For instance, if we know that public sentiment tends to 
vary similarly between nearby towns, then when one town shows anomalous 
behavior, we can reasonably suspect problems with the data. There might be local 
issues that cause the anomaly, but it is, at least, worth noting and bringing to the 
attention of the user of the data and model. As MAT is designed to help analyze 
models and recognize inter-data relationships, it is primed to perform exactly this 
analysis. Existing methods perform similar types of analysis for environmental 
data  (Dereszynski & Dietterich, 2007, 2011). For instance, a broken thermometer 
can be identified and the data from it even estimated by looking at the temperature 
readings of nearby thermometers, which will generally be highly correlated.  

 Application to multiple scientific modeling domains. To ensure (and 
demonstrate) that MAT can be applied to a wide range of scientific domains, we 
identified and built a number of models from differing scientific domains and 
analyzed the associated data with MAT, making any extensions to the MAT tool 
necessary to support the analysis of such a model. The initial MAT effort focused 
on HSCB models; by focusing this effort on harder-science models at much 
shorter time durations, we believe we have demonstrated an interesting range of 
applications of the MAT tool.  

3. Accomplishments of the Program 

In this Section, we review the accomplishments of the effort. In Section 3.1, we describe 
our results in creating temporally fluid causal analysis techniques; in Section 3.2, we 
present our results on automated model recommendations; in Section 3.3, we describe our 
results in data validation; in Section 3.4, we describe out efforts to apply MAT to a 
variety of scientific domains. Finally, we made a number of other improvements to the 
usability and efficiency of the software that are not directly tied to other objectives; these 
are summarized in Section 3.5. Our transition and marketing efforts are described in 
Section 3.6. 
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3.1. Temporally Fluid and Other Causal Model Analysis Techniques 

Our goal for this task is to identify algorithms and tools that can help scientists to analyze 
causal relationships in their data. Under the previous MAT program, we developed the 
ability to do correlation analyses of temporally offset data. The idea was that, if causes 
precede effects, then we might find cases where the purported cause with the data shifted 
forward in time has a higher correlation than if there was no shift in the two data series. 
That is, offset correlations may help identify when there is a temporal lag between two 
data series, which is evidence of a potentially causal relationship between the two series. 
The initial implementation, however, only worked for static offsets and we expect that 
the time between the cause and effect might vary slightly between instances of causes and 
effects.  

Under the current effort, we are developing methods so that this offset can be more 
flexible, since offsets in many scientific domains are rarely fixed. To address these cases, 
we are exploring more advanced methods for validating causal relationships in models. 
This validation can help researchers produce more robust models of complex systems to 
facilitate the testing of dependencies that might otherwise be missed, assumed away, or 
taken for granted. We reviewed the following four methods: 

 Granger Causality (GC) – This statistical method comes from work in econometrics 
and was designed to attempt to find predictive patterns in temporal data. 

 Dynamic Time Warping (DTW) – This is inspired by work in gait recognition, where 
the same gait must be recognized even when the subject is slowing down or speeding 
up. 

 Convergent Cross-Mapping (CCM) – This is a relatively new method that is effective 
at identifying cyclical causal patterns, such as found in predator-prey systems. 

 Feature-Based Pattern Detection – This approach first pulls out “interesting” features 
from the data (e.g., large drops, spikes) and looks for patterns between those features 
across multiple datasets. This approach can identify causal and predictive patterns 
even where there is little to no statistical correlation in the data values. 

The following sections discuss the first three of these methods. The fourth is described in 
more detail in Section 3.2.3. 

3.1.1. Granger Causality for Validating Dependencies 

Granger Causality (GC) was originally introduced for economic models (Granger, 1980, 
1969) to help deal with the problem of temporal offsets. It can, however, be adapted as a 
validation test for causality in socio-cultural data. Granger causality makes two 
assumptions: (1) the effect does not precede the cause, and (2) the causal variable 
provides information about the effect that is otherwise unavailable. 

Definition 1 (Granger Cause). The temporal variable X Granger causes temporal 
variable Y iff 𝑃(𝑌𝑡 | 𝑌𝑡−1

𝑡−𝐿)  ≠ 𝑃(𝑌𝑡 | 𝑌𝑡−1
𝑡−𝐿 , 𝑋𝑡−1

𝑡−𝐿) where L is the maximum time lag, ai, bj 
are parameters in a linear combination, 𝜖1, 𝜖2 are error terms, and 
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𝑃(𝑌𝑡  | 𝑌𝑡−1
𝑡−𝐿)  =  ∑ 𝑎𝑙  𝑌𝑡−𝑙 + 𝜖1

𝐿
𝑙=1   (1) 

𝑃(𝑌𝑡  | 𝑌𝑡−1
𝑡−𝐿 , 𝑋𝑡−1

𝑡−𝐿)  =  ∑ 𝑎𝑙  𝑌𝑡−𝑙 +𝐿
𝑙=1  ∑ 𝑏𝑙  𝑋𝑡−𝑙 + 𝐿

𝑙=1 𝜖2 (2) 

Variable X is a Granger cause of Y if Y is better predicted using the histories of X and Y 
than just of Y alone. We can validate this relationship through hypothesis testing. If 
equation (2) is statistically more accurate than equation (1) using an F statistic, then a 

causal relationship between X and Y is valid. Figure 3-1 shows this test. 

 
Figure 3-1: Granger causality F-test validation 

When implementing this metric, we found that it was sensitive to multiple linear 
regression, so we experimented with several regression techniques. We are currently 
using the algorithm from the Apache commons, and are considering allowing the user to 
select from multiple regression methods in future versions of MAT. 

We implemented the GC metric in a Matlab prototype, then ported the Matlab prototype 
into our Java-based MAT application.  

3.1.2. Dynamic Time Warping for Uneven Temporal Relationships 

Many causal relationships are imperfectly represented in the observed data. This is 
particularly salient in complex socio-cultural systems where variability in human 
behavior produces uneven temporal delays between cause and effect. For example, lower 
employment rates may cause an increase in future (e.g., 6 to 12 months) crime rate. These 
relationships cannot be captured by standard statistical analyses (including GC), which 
assume a stationary process with a consistent time lag.  

To validate these relationships, we borrowed and extended the dynamic time warping 
(DTW) algorithm from gait recognition (Salvador & Chan, 2007; Myers & Rabiner, 
1981), where DTW identifies a gait from two motion curves even when a person speeds 
up or slows down. The DTW algorithm compares the two time series to find the optimal 
alignment by “warping” one series by stretching or shrinking it along its time axis.  

Definition 2 (Warp Path). Given two time series X and Y of size n and m a warp path W 
is a sequence W=w1, w2, …, wK where K is the length of the path and each element wk = 
(i, j) represents a mapping between point i in X with point j in Y. The optimal warp path 
minimizes the sum of distances between the mapped points  

Granger Causality F-test Validation Procedure 
H0: X does not Granger cause Y. 
 
1. Choose the desired significance level α and identify the critical value c. 
2. Use equations (1) and (2) to compute the F-statistic where (1) is a restricted model of (2) 

such that all of the coefficients bt-1 = bt-2 = …= bt-L = 0. 
3. If F > c, then the null hypothesis can be rejected and a causal relationship is validated.  
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𝑎𝑟𝑔𝑚𝑖𝑛 𝐷𝑖𝑠𝑡(𝑊) =  ∑ 𝐷𝑖𝑠𝑡(𝑤𝑘𝑖 , 𝑤𝑘𝑗)

𝑘=𝐾

𝑘=1

 

where 𝐷𝑖𝑠𝑡(𝑊) is the distance of warp path W and 𝐷𝑖𝑠𝑡(𝑤𝑘𝑖, 𝑤𝑘𝑗) is the distance 
between point i in series X and point j in series Y. 

A warp path identifies a series of cells in an n × m two-dimensional cost-matrix D, where 
each D(i,j) is the minimum distance warp path that can be constructed from X  up to  xi  
and Y up to yi. The final entry contains the optimal path over the full series.  

Because causality only impacts the future, we expanded DTW to handle the one-
directional case in a new algorithm, ForwardDTW. Rather than matching points in both 
directions, ForwardDTW only matches the points in X with future values of Y. That is, the 
entry D(i,j) is only computed for i < j. ForwardDTW enables us to use DTW to validate 
causal relationships—the smaller the warp distance between X and Y, the stronger the 
causal link. A user can specify this causality threshold to determine when a relationship is 
considered validated, as shown in Figure 3-2. 

Figure 3-2: Dynamic time warping validation procedure 

Some advantages of DTW over other time series analyses are that it can account for 
missing data and compare series with different time scales or sampling frequencies. DTW 
is also very visual, making the results easy to interpret by human analysts.  

One concern with DTW is that it is flexible and powerful enough to make even dissimilar 
datasets appear similar (to a point). To address this, MAT provides two methods to 
control and evaluate the results of the DTW algorithm.  In particular, MAT provides the 
user the ability to limit how much warping is permissible and it displays the warped data, 
drawing visual attention to the shift, compression, and expansion regions so that the user 
can easily see what the warping is doing to match the curves. 

DTW uses a cost matrix to determine the optimal “warping” between two data sets. 
Warping is defined as the mapping between data points in one series to data points in 
another that minimizes the sum of distances between the mapped points. One major 
advantage of DTW compared to other algorithms used for time series comparison is that 
it can account for missing data points and can compare two data sets that use different 
time scales or sampling frequencies by compressing or expanding certain areas of the 
data set. 

Dynamic Time Warping Validation Procedure 
 

1. Set a warping threshold t. 
2. Use the ForwardDTW algorithm to compute min 𝐷𝑖𝑠𝑡(𝑊)for X and Y. 
3. If min 𝐷𝑖𝑠𝑡(𝑊) < t, a causal relationship is validated. 
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One limitation of the DTW algorithm is the efficiency in both time and space used by the 
algorithm. Because it compares all the points to each another in a cost matrix, the 
algorithm runs in quadratic time and uses quadratic space in relation to the size of the 
input data set. When comparing large data sets, this cost can make the algorithm 
unusable. However, academic research into DTW optimization has resulted in a 
breakthrough to reduce this cost, providing a linear time approximation algorithm 
(FastDTW) that performs far better than previous approximations (Chan & Salvador, 
2007).  

To quickly incorporate the DTW algorithm into MAT, we used the free, open source Java 
library included with the paper describing the algorithm (Chan et al., 2007). Both the 
regular DTW and FastDTW algorithms are implemented in this open-source library and 
have been incorporated into MAT. 

Because we envision that the DTW algorithm in MAT will be used not only to compare 
two time series, but also to analyze causal relationships, we slightly modified the original 
DTW algorithm. To match time series together, the original DTW algorithm matches 
points in either direction, allowing some points in the series to shift forward as well as 
backward to better match up. However, a backward shift in time is nonsensical in this use 
case and would mislead the user, so we removed this ability. We named this algorithm 
ForwardDTW. 

The functionality of DTW implemented under the previous MAT effort enables users to 
select two time series for comparison, displaying the traditional warping lines between 
the two series, as shown in Figure 3-3. In this case, we are comparing natural gas rents 
(green) with coal rents (red). 

 

Figure 3-3: MAT timewarping analysis capability 
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The user can also include the resulting time series if the warping process shifts, 
compresses, and expands the time series to better match the other, as shown in Figure 
3-4. In this case, we shift the green line to create the brown line, which better matches the 
red line. The user can hide the lines to better view the shift and is given the pre-warp and 
post-warp correlation values for the two data sets. 

 

Figure 3-4: Timewarped data in MAT 

One concern with DTW is that it can make dissimilar data sets appear similar. By 
providing users with some metric or threshold based on the cost of the warp and 
improvement in correlation, we may be able to prevent such false positives in the 
majority of cases. 

3.1.3. Convergent Cross-Mapping for Dynamic Feedback Models 

Many social systems contain feedback relationships, where dependency between 
variables is bi-directional—declining economic output may increase levels of political 
violence, which further depresses the economy, etc. These relationships are extremely 
difficult to validate using standard approaches. To analyze cyclic causality, we used the 
CCM algorithm (Sugihara, May, Ye et al., 2012). CCM was first introduced in biology to 
model predator/prey systems, but can be adapted to model the interrelationships in other 
types of scientific data.  

To use CCM, we derived a set of vectors for variables X and Y called shadow attractor 
manifolds to represent a topological projection of the underlying dynamic system.  

Definition 3 (Shadow Attractor Manifold). For a time series variable X, the shadow 

attractor manifold MX consists of points 𝑥(𝑡) = (𝑋(𝑡), (𝑋(𝑡 − 𝜏), 𝑋(𝑡 − 2𝑡), … , 𝑋(𝑡 −

𝐸𝜏)), where τ is a sampling time lag and E is the manifold dimension. 
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For subsets of the time series X and Y of length L, we can construct manifolds MX and MY. 
CCM then determines how well local “neighborhoods”—small regions of MX —
correspond to neighborhoods in MY. If X and Y are causally linked, there is a one-to-one 
mapping between points in MX and MY . To compute this cross mapping, we use a 
neighborhood in MX to predict the values of contemporaneous points in MY and compute 
the correlation ρ between the predicted values �̂�(𝒕) and the real values Y(t). If a causal 
relationship exists, predictions of the state of Y from X (and vice versa) improve 
asymptotically as the amount of data (L) increases; that is, the mapping of X and Y will 
converge to perfect predictability ρ = 1. Figure 3-5 lays out this process. 

 

Figure 3-5: Convergent cross mapping validation procedure 

In Figure 3-6, the red time series (center) is generated from the blue reference series 
(left); the green series (right) is generated from an independent set of parameters. 

 

Figure 3-6: Three synthetic time series used to validate the CCM implementation 

In Figure 3-7, the plot on the left illustrates CCM output for the unrelated blue and green 
time series; the plot on the right illustrates asymptotic prediction accuracy as a function 
of observation length L on the blue and red time series. 

Convergent Cross Mapping Validation Procedure 
 

1. Randomly choose segments of length L from X and Y. 
2. Construct shadow attractor manifolds MX and MY  for XL and YL. 
3. Compute the cross mapping ρ between MX and MY in both directions.  
4. If ρ converges toward 1as L increases, then there is a causal link. 
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Figure 3-7: CMM output for the synthetic time series 

3.1.4. New Causal Analysis Method: Beta Process Predictor Analytical Method 

We have developed an additional causality analysis methodology provisionally called a 
beta process predictor. The idea behind this method is to model causal distributions as 
beta distributions. Most causal or statistical methods make a Gaussian assumption about 
the distribution of data, which is reasonable if each event is fully independent. In 
practice, however, real data tends to follow beta distributions because individual data 
events are not independent of each other. 

The method works by examining for each effect-hypothesis data point every possible 
percent change in the data at different offsets leading up to that point. The best match is 
added as the preferred offset for that point. For example, if the effect shows a percent 
change of +15% and there are three causal points at offsets of 1 month previously, 2 
months, and 3 months with values of +5%, +17% and +25%, then an offset of 2 months 
will be chosen (because the difference between 15 and 17 is the least among the three 
candidates). This results in an offset distribution. For example, if we repeat this process 
for 1000 points in the effect dataset, then we might have 43 points at -5 months, 117 
points at -4 months, 175 points at -3 months, 511 points at -2 months, and 223 points at -
1 months and smaller numbers beyond -6 months back. This offset distribution is fitted to 
a beta distribution which yields an alpha and beta parameter which fully characterize a 
beta distribution. We can then measure the peakedness, or kurtosis of the resulting 
distribution by the equation: 

 

The sharper this peak, the more likely the causal relationship is taken to be and vice 
versa. If there is no causal relationship, we would expect the distribution to be flat 
(kurtosis = 0). As a final step we perform this analysis both ways, for A→B and B→A. 
The ratio of the higher value over the lower is taken to be the degree of causality. 

We have tested this metric against synthetic data by creating fully causal series and 
injecting differing amounts of random noise into data, then testing to see whether the 
metric can detect the causality. Figure 3-8 shows our preliminary results and that Beta 
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does outperform Granger analysis for differentiating the direction of causal links for 
moderate amounts of noise. 

 

Figure 3-8. Comparison of Beta and Granger causal analysis performance 

3.1.5. Integrated Causal Analysis Report 

We are developing an integrated causality analysis reporting feature. Previously users of 
MAT would have to use different individual analytical techniques to formulate their own 
specialized view of indicators which could suggest a causal relationship between one or 
more data series. The new functionality combines multiple causality-related analytical 
tool calculations into a single report.  

To access the new report, the user selects two series in the MAT Data View and right 
clicks to access the normal context menu, which now has a new choice “Causality 
Analysis Report.” Activating the report runs the analysis and pops up the report in a 
dialog box. The analysis automates various parameterizations which the user would 
normally have to perform manually. For example, the analysis examines different 
temporal offsets (e.g., for Granger Causality analysis) and determines which is most 
likely, then uses causality metrics at those particular offsets to determine the degree of 
causality. 

3.1.6. Evaluation of Causality Analysis Techniques 

Synthetic Data-Based Evaluation 

We implemented and evaluated complementary approaches to detecting causal 
relationships between two time series. In this section, we compare the results obtained by 
Granger Causality (GC) and Dynamic Time Warping (DTW) approaches for detecting 
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causality, and discuss the importance of selecting a proper representation for the 
underlying data.  

A qualitative comparison of GC and DTW methods on World Bank data indicates that 
both methods can identify potential causal (or correlative or predictive) relationships 
between time series. Table 1 illustrates the top 20 World Bank time series likely to share 
a causal relationship with the Natural Gas Rents records, as determined by DTW cost 
scores.  

 

Table 2 illustrates the same results obtained using GC. Results are shown for 
comparisons between raw data, scaled data, and scaled and de-trended data series.  

As GC inherently computes a normalized correlation score, there is no difference 
between raw and scaled datasets, and we omit GC results on raw data. Results are color-
coded based on a series’ estimated relevance to the query series—series likely to be 
correlated are left white; series that may be indirectly correlated are highlighted gray; 
series deemed unlikely to be causally correlated are highlighted yellow. A graph 
capturing the causal likelihood score across the top 100 series is included in each column 
(a lower score indicates a stronger likelihood of correlation/causation). As we expect few 
time series to truly exhibit causal relationships, we expect this curve to exhibit an 
asymptotic slope, in which a small number of time series are closely related to the query 
data, and similarity to other data rapidly decreases. 

We found that DTW is particularly sensitive to significant differences in scale between 
time series, due to the underlying distance-based matching metric. This can be observed 
both from the quality of resulting matches, as well as from the shallow shape of the score 
curve. As a result, datasets must be appropriately normalized before performing analysis 
using DTW. To enable direct comparison between time series using DTW, we normalize 
datasets to the unit standard deviation.  

We also found that certain time series may inherently follow long-term trends that may 
be present across many time series (e.g., economies tend to grow as a general trend). 
These trends may conceal relationships between time series that may have significant 
short-term impacts. To account for this possibility, we applied a linear de-trending 
process to each time series. This process noticeably impacts the rankings obtained using 
both DTW and GC techniques; in the case of DTW, this process appears to improve the 
overall quality of the returned results. However, as de-trending may not be appropriate 
for all datasets, we plan to implement this function as an optional step in the feature 
extraction process. 
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Table 1: Automatic ranking of likely causal r elationships between time series, using dynamic time warping 

Natural Gas Rents: Top 20 Causally-Linked Series (Dynamic Time WarJ!!!!g,'--------------1 
Raw Data 
!Arable land (hectares per person) 
C02 emissions (kg per 2000 US$ of GDP) 
C02 emissions (kg per 2005 PPP $ ofGDP) 
Adjusted savings: carbon dioxide damage (% of GNI) 
Forest rents (% ofGDP) 
C02 emissions (kg per PPP $ of GDP) 
Coal rents (% of GDP) 
Mineral rents(% ofGDP) 
C02 emissions from other sectors (% total fuel combustion) 
Adjusted savings: mineral depletion ("lo of GNI) 

evalence ofHIV, total(% of population ages 15-49) 
ermanent cropland ("lo of land area) 

Adjusted savings: particulate emission damage (% of GNI) 
Oil rents(% ofGDP) 
Foreign direct investment, net inflows (% of GDP) 
~EC alternative conversion factor (LCU per US$) 
Official exchange rate (LCU per US$, period av~~ 
Foreign direct investment, net outflows ("lo of GDP) 
~ed forces personnel(% of total labor force) 
!Personal transfers/co . ations of I. % of GDP 

1.5 

05 

-10 50 60 70 60 90 100 

Charles River Analytics 

Scaled Scaled and De-Trended 
Total natural resources rents(% ofGDP) 
Electricity production from oil sources (% of total) 
Adjusted savings: natural resources depletion (% of GNI) 
Electricity production from oil sources (kWh) 
Adjusted savings: energy depletion (% of GNI) 
Inflation, consumer prices (annual %) 
Real interest rate ("lo) 
~tion, GDP deflat (annual%) 
Total reserves in months of imports 
Oil rents(% ofGDP) 
Adjusted net savings, excl particulate emission damage ($) 
Mineral rents(% ofGDP) 
Claims~P.tivate sec (annl!!!:O as% of broad money) 
Adjusted savings: net national savings (% of GNI) 
Adjusted savings: mineral depletion ("lo of GNI) 
Adjusted savings: net national savings (current US$) 

ding interest rat (% 
Coal rents (% of GDP) 
Broad money growth (annual%) 
Mon and owth annual % 

0 09 

0 08 

O.o7 

0 06 

Total natural resources rents (% ofGDP) 
Adjusted savings: energy depletion (% of GNI) 
Adjusted savings: natural resources depletion (% of GNI) 
C02 emissions from gaseous fuel consumption (kt) 
C02 emissions (kg per 2000 US$ of GDP) 
Population in urban agglomerations of more than 1M(% total pop) 
Forest rents (% ofGDP) 
Electricity production from oil sources (% of total) 
C02 emissions from liquid fuel consumption ("lo of total) 
C02 emissions from residential bldgs/comm. +pub services (MMT) 
Fossil fuel energy consumption ("lo of total) 
C02 emissions from liquid fuel consumption (kt) 
Electricity production from oil sources (kWh) 
Broad money to total reserves ratio 
Money and quasi money (M2) to total reserves ratio 
Quasi-liquid liabilities(% ofGDP) 
Electricity production from oil, gas and coal sources (% of total) 
C02 emissions from other sectors (MM1) 
Industry, value added (% ofGDP) 
Oil rents % ofGDP 

0 07 

0 065 

0.06 

0 055 

0.05 

p. 15 
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Table 2: Automatic ranking of likely causal relationships between time series, using Granger causality 

Natural Gas Rents: Top 20 Causally-Linked Series (Granger Causality) 
Raw Data Scaled Scaled and De-Trended 

Road sector gasoline fuel consumption per capita (kg of oil eq) Road sector energy consumption per capita (kg of oil eq) 
C02 emissions (metric tons per capita) Energy imports, net(% of energy use) 
Electricity production from oil sources (kWh) Road sector energy consumption (kt of oil equivalent) 
Energy use (kg of oil equivalent per capita) Road sector gasoline fuel consumption (kt of oil equivalent) 
Terms of trade adjustment (constant LCU) Road sector gasoline fuel consumption per capita (kg of oil) 
Electricity production from oil sources (% of total) C02 emissions from liquid fuel consumption (kt) 
Combustible renewables and waste(% of total energy) Electricity production from oil sources (kWh) 
C02 emissions from liquid fuel consumption ("lo of total) Energy use (kt of oil equivalent) 
C02 emissions from liquid fuel consumption (kt) C02 emissions from transport (million metric tons) 
C02 emissions from solid fuel consumption ("lo of total) Energy use (kg of oil equivalent per capita) 
C02 emissions from residential buildings and commercial) C02 emissions (metric tons per capita) 
Adjusted net savings, ex particulate emission damage Consumer price index (2005 = 1 00) 
Coal rents(% ofGDP) C02 emissions (kt) 
C02 emissions from manufacturing industries Electricity production from oil sources (% of total) 
Adjusted savings: net national savings (% of GNI) Stocks traded, turnover ratio ("lo) 
Adjusted savings: consumption of fixed capital (% of GNI) Industry, value added (constant LCU) 
Land area (sq. km) Industry, value added (constant 2000 US$) 
Surface area (sq. km) C02 emissions from liquid fuel consumption ("lo of total) 
Risk premium on lending (lending minus treasury rate) C02 emissions (kg per PPP $ of GDP) 
Adjusted savings: energy depletion (current US$) Personal transfers and compensation of employees (US$) 

I . I r I 

·• ·10 

· 10 
·15 

· IS 
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.20 

·25 ·2S 
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Real-World Causality Analysis Use Case Development and Demonstration 

We developed an in-depth, real-world demonstration use case of MAT as a causal-analysis and 
modeling tool, which we included in our AHFE paper and which we hope will provide a sound 
basis for ongoing evaluations and demonstrations. In the case study, we demonstrate a 
representative exploration of the causal/predictive relationship between poverty and conflict. A 
large body of literature exists that explores the “conflict trap”—the process whereby countries 
get stuck in a repeated pattern of violent conflict and economic underdevelopment (Collier et 
al., 2003). There have been several studies evaluating the causal/predictive link between these 
two features using standard statistical approaches, with some finding evidence for poverty 
driving societies into conflict (Collier & Hoeffler 2004, Braithwaite 2014), while others 
(Djankov 2008) indicate that civil conflict may be the cause of depressed economic growth. 
Using the methods described in the previous section, we can better untangle and characterize 
this relationship and gain insight into the processes that lead to the conflict trap. 

The choice of data is itself a challenge for causal/predictive analyses, as the complex and 
abstract concepts of “poverty” and “conflict” are difficult to represent as measurable variables. 
To measure conflict we use the UCDP/PRIO dataset (Themnér & Wallensteen 2014), which 
tracks the incidence and intensity of global armed conflict between 1946 and 2013. To capture 
the notion of poverty, which is not merely a measure of income, but also of relative well-being, 
we use two variables from the World Bank World Development Indicators dataset (The World 
Bank 2013)—infant mortality rate, measured as the number of infants per thousand live births 
that die each year, and GDP, to measure the overall level of development. We consider conflict 
as both a categorical variable ranging from 0 to 3 indicating the intensity of a conflict in a given 
year, and as a numerical value with counts of the battle deaths due to conflict within a country. 
We focused on the timeframe from 1960-2013 as both data sets were more complete for this 
time period.  

In our first experiment, we analyzed the relationship between poverty and conflict using 
Granger causality, varying the time lag between 1 and 10 years. Out of the 100 countries under 
study, we found strong evidence that conflict causes poverty in about 30% of the cases with a 
time lag of 1 year, as shown in Figure 3-9, with strength of the causal linkage degrading 
slightly as the time lag increased. Interestingly, there is also strong evidence of a causal 
relationship from poverty to conflict, but this actually consistently increases as we stretch out 
the time lag. This result may indicate the nature of conflict and poverty as persistent conditions 
with longer duration impacts, but may also be due to uneven time lags that cannot adequately 
be captured by Granger causality. 
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Figure 3-9. Results from Granger causality analysis with increasing time lag. 

For our second experiment, we used convergent cross mapping (CCM) to further characterize 
the causal relationship between conflict and poverty. Social processes are often best described 
by complex dynamical systems, with multiple layers of feedback and interaction, and CCM can 
help identify these more complex causal interactions, particularly reciprocal or bidirectional 
causality. Because CCM examines the relationships between projections of the time series, we 
normalized the data to measure the percent change at each time point to account for the vastly 
different scales of conflict casualties, infant mortality, and GDP. We observed convergence in 
80% of countries supporting the hypothesis that conflict causes poverty, and 12% for poverty 
leading to conflict. However, these results may be skewed by the perfect predictability of 
conflict in countries that experienced no conflict during the time period under study. Figure 
3-10 shows an example of convergence to support the hypothesis that conflict causes poverty in 
Comoros. 
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Figure 3-10. Results from CCM analysis illustrating convergence indicative of a causal link from conflict to 

poverty. 

While dynamic time warping and convergent cross-mapping can be useful analytic tools, the 
nature of our case study data is not ideal for these types of methods that look explicitly for 
point-by-point relationships across the time series. However, even though the relationships 
between the conflict and poverty data are difficult to quantify through these types of 
measurements, we found they can be reasonably described through qualitative featurization 
analysis. While conflict and poverty are linked to one another, this phenomenon does not 
manifest as similar patterns of proportional increases or decreases in values offset in time. 
Instead, across the countries studied, we saw that rapid increases in conflict or periods of 
recurring conflict are associated not with similar fluctuations in poverty, but by continually 
decreasing or statically depressed levels of economic activity and by statically high levels of 
infant mortality. Similarly, we found that when the conflict ended, we saw decreases in poverty 
follow. In essence, this illustrates the notion of the conflict and poverty traps, where violence is 
associated not with rapid declines into poverty, but with sustained levels of minimal 
development.   

Figure 3-11 shows an example using the qualitative feature-based approach to analyze the data 
from Senegal. The top plot indicates GDP in current US$ from 1989 to 2013, the middle plot 
shows the number of battle related deaths, and the bottom chart is the infant mortality rate. The 
human-guided qualitative featurization algorithm has divided these data series into important 
component pieces representing distinct features. From these features, it is evident that there was 
a period of violent conflict from 1989 to about 2004, with several spikes in the number of 
casualties. During this same time, infant mortality was consistently high, and GDP was 
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consistently low. However, after 2004, GDP and infant mortality both begin to steadily 
improve, while conflict remains very limited. Using these features to represent concepts such as 
“spikes in conflict” and “high infant mortality,” we can identify causal patterns between these 
more complex features that are not visible when doing a lower-level comparison of individual 
time points. 

 

Figure 3-11. Qualitative featurization showing the relationships betcapween poverty and conflict. 

3.2. Automated Causal Model Recommendations 

3.2.1. Automated Suggestions for Model Construction and Refinement 

The Model Construction and Refinement capability in MAT is used to suggest changes to the 
causal model to improve its explanatory power. We developed a model recommendation tool 
that can discover feature series with potential explanatory value and suggest possible 
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explanations to the user. The design concept for this tool is that if users discover that there are 
features of the data that are not well explained by their theory, the model recommendation tool 
can help find alternative explanations that can be used to refine their theory.  

In this section, we first describe the process for automatically identifying and recommending 
model refinements, then we describe a new capability for automatically identifying events in 
the data that have not been explicitly identified by the user but that might still have explanatory 
power. 

3.2.2. Causal Model Recommendations 

The causal model recommender automatically suggests modifications to user-defined causal 
models from the available data. MAT attempts to return models that are optimal along the 
following dimension: 

 Performance [The number of supported effects and contributing causes]. MAT attempts to 
find models that explain more events, both in terms of not having causes without 
corresponding effects and not having effects with corresponding causes. 

 Model size [The number of nodes and edges].  MAT prefers simpler models over more 
complex models. This is both an Occam’s-Razor like heuristic, but also an attempt to not 
overfit data, which is a problem in many machine learning systems that are able to explain 
all data but only through the creation of overly complex and, more importantly, typically 
wrong models. 

 Temporal aspects [The duration of temporal windows]. MAT looks for models that use 
temporally closer causes and effects. That is a cause early in the dataset could be used to 
explain all events from then forward if the duration of the causes impact is assumed to be 
arbitrarily long. Most causes, however, tend to be temporally close to their effects. 

MAT returns a set of suggested model edits and display the results in a user-friendly way. The 
recommendations are now a list of causal models where no model is strictly worse that another 
model in the list (that is, worse along all three dimensions just described). This set of models 
are said to define the Pareto Frontier, a term from multi-objective optimization to describe this 
kind of solution set for problems with different tradeoffs in terms of the objectives they are 
attempting to satisfy. This approach eliminates any obviously poor recommendations, but also 
makes no assumptions about the user’s preferences regarding tradeoffs between various 
characteristics of the causal models.  

The recommendations include simple causal models that only have a single cause for the effect 
of interest, but more complex causal models are also generated where multiple causes are 
combined using logic nodes. We chose to make only single-cause model recommendations 
because we believed these would be the most plausible and acceptable modifications to the 
model created by the user.  

MAT currently uses two algorithms for generating causal model recommendations. The first 
examines all possible combinations of causes with all possible combinations of temporal offsets 
for the data provided. This approach quickly becomes computationally expensive, so a second 
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approach is also included with more complex models built using the results from simpler 
models, resulting in the reduction of the number of possible causal models to evaluate. 
However, this approach may miss a causal model (e.g., models with multiple causes) that is 
found by the first approach. The recommender displays a progress bar during the operation and 
the user can cancel the operation if it is taking too long or if a model is found that seems 
acceptable or interesting. 

Both of these algorithms return a Pareto Frontier of causal models, which prevents any 
obviously inferior models from being presented to the user, but many recommendations may 
still be generated. Therefore, the recommender results are displayed in a sortable table.  Each 
row is a causal model recommendation and the user can sort based on various aspects of the 
causal models by clicking on the column headers in the table. The recommendation table makes 
it easy for the user to explore the various causal models and to see how it influences model 
validation. Figure 3-12 shows the user looking at a simple causal model with a large temporal 
window.  That is the model requires the effects of the cause to affect events up to 7 years in the 
future (see the “-7” in the annotation on the link in the figure). Figure 3-13 shows a more 
complex causal model (there are multiple disjunctive possible causes), but with a smaller 
temporal window (causes only need to have an effect of 1 year). 

 

Figure 3-12: Simple causal model 
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Figure 3-13: More complex causal model 

Causal models that have lower performance, but excel in other aspects are also included in the 
table. Figure 3-14 shows a simple causal model with a small temporal window. This selection 
may be preferred to either of the previous two models even though it does not provide support 
for all of the effects. 

 

Figure 3-14: Another causal model with different properties/tradeoffs 

3.2.3. Automatic Feature Extraction and Pattern Analysis 

In many domains, causal models can be most easily described in terms of patterns of qualitative 
features, rather than quantitative relationships. In MAT, users can identify qualitative features 
in data streams that represent meaningful events, such as “spikes in crime.” The existing feature 
recognition system uses these user-identified events as exemplars in a learning-by-example 
approach, automatically searching for repeated, temporal patterns of these events in the data.  

This only works, however, when the user knows which features are of interest ahead of time. 
We expect this often be the case, but not always, so we included functionality in MAT to 
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automatically mine the available data for "interesting" features that have explanat01y power for 
causes of other user-defmed events. To provide this capability, we developed an automated 
approach to exu·acting features in data su·eams using a non-linear optimization algorithm, the 
Nelder-Mead Simplex algorithm, to identify sh11ctural, qualitative features of a data series. This 
algorithm divides a time series into the optimal combination of structural features using the 
featurization "language" (from Olszewski, 2001) discussed in previous rep01is (see Figure 
3-15). 

(a) (b) (c) (d) (e) (f) 

Figure 3-15: Six common function morphologies that can comp1·ise qualitative featm·es: (a) slope, (b) 
constant, (c) exponential, (d) tliangle, (e) trapezoidal, (1) sinusoidal 

When features are selected by the automatic feature exu·action algorithm, they are then 
clustered into meaningful concepts. For example, similarly shaped exponential increases in 
crime are grouped together in a concept called "increases in crime." This mechanism is based 
on the m01phologies shown in Figure 3-1 5, but we plan to explore additional clustering 
algorithms that can group features at a finer granularity according to the parameters of their 
sti11ctural representation and their duration over time. This new capability has been fully 
integrated into the MAT user interface (see Figure 3-16). 

Charles River Analytics p. 24 
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Figure 3-16: Automatic feature extraction identifies qualitative structures in a time series 

This approach fully featurizes a data stream, which can generate more features that are useful 
or interesting. We combined this automatic feature extraction with a heuristic version of the 
TF-IDF (term frequency-inverse document frequency) algorithm from document analysis to 
identify features that are characteristic of a time series (i.e., frequent in the data stream, but 
infrequent in other data streams), and those that are uncommon, but extreme and meaningful 
from a causal modeling perspective (e.g., you might only have one stock market crash in your 
data, so it is not frequent, but is extreme enough to be interesting). 

In MAT, this automated feature extraction can be used with the causal model recommender, 
providing additional candidate causes. With this capability, MAT now provides the user with 
novel suggestions of causal relationships based on features that might otherwise have been 
overlooked, helping user refine and validate their causal models. 

3.3. Data Validation 

Data validation will support data analysts who are concerned that they are developing models 
with unreliable data or who are developing models to help detect when a system breaks. For 
instance, if we can develop a model for how survey data results from various regions tend to 
correspond to each other, then we can develop tools that can flag data that appears to violate 
those historic patterns, and so might not be appropriate for use in decision making or model 
building. 
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The basic idea for our approach is similar to that described in Dereszynski and Dietterich  
(2007, 2011) in the domain of environmental science. That is, we create a graphical, 
probabilistic model from “good” data that models and learns how various data sources relate to 
each other. For MAT, we plan to have the use identify the structure (that is, which variable are 
likely to related) and to use machine learning techniques to learn the patterns (traditional multi-
linear regression would be acceptable in many cases, but we also happen to have access to 
richer probabilistic machine learning tools in house that let us build more sophisticated models 
if needed). We use the resulting model to identify (and suggest repairs for) anomalies in a 
dataset that is not known ahead of time to be “good.” We currently assume that a domain expert 
user can recognize “good” data from which to learn. 

We have identified two basic reusable templates to describe data gathering situation, the first is 
where there is a sensible controller for each variable of interest, and the second is where there is 
no controller. An example of the first case is a simpler thermostat where you can sense the 
desired temperature value as specified by the thermostat and you can sense the actual 
temperature. In this case, either the controller or the sensor can be broken and the task is to 
identify which and to estimate the true value based on the available data. For instance, if the 
sensed temperature begins returning 0 over and over or a random value, we might guess that 
they temperature sensor is broken and estimate that the true value is actually the thermostat 
value. 

An example of the second case is where we have polling data from a number of villages within 
the same region. In general, they will tend to vary a bit from each other, but will also be highely 
correlated. In this case, imagine a poll-taker who decides to fill out the polls himself randomly 
instead of asking people, you would see a shift in that village from the others that should be 
detectable. In this case, we could hypothesize that the actual value is roughly the value of the 
other villages (or some learned offset if, say, one village regularly polls a bit higher or lower on 
a question). 

For both of these cases we have identified a simple graphical template to describe the situation 
and a mapping from that template into a graphical probabilistic model to describes the situation 
in a bit more detail. For instance, for the thermostat example is depicted in Figure 3-17 (note 
that it is possible to create multiple thermostats, such as in a home with multiple heating zones). 
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Figure 3-17. Simple thermostat scenario 

In this case, the scenario maps into the graphical model shown in Figure 3-18. This figure is 
obviously quite a bit more complex, which is why we want the user to work in the simpler and 
more intuitive space demonstrated in Figure 3-17. A key reason for the complexity of the 
probabilistic model is that it learns how things change over time and, so, can learn that 
temperatures change gradually from the current temperature to a new specified temperature and 
that something that is broken tends to stay broken. 

The probabilistic model is encoded in the open source Figaro programming language, which 
can take data as input and learn the model parameters that describe the behavior of the model. 
Once these parameters have been learned, the model can detect broken sensors and broken 
thermostats and can make estimates of actual values of the parameters that cannot be properly 
sensed. For now the Figaro code is written by hand, but is structured according to the 
templates. Eventually, we would want to automatically generate the Figaro code as well. 
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Figure 3-18. Graphical probabilistic model of thermostat scenario 

Figure 3-19 shows the learning system in action. In this case, we see the thermostat being set to 
different values throughout the day, the temperature changing accordingly, and the systems 
estimates largely tracking the actuals. Figure 3-20 shows the systems underlying assessment of 
whether any of the data is bad. There is a blip in the middle where there is estimated to be some 
chance that the thermostat is broken (because the temperature is declining after turning down 
the thermostat more slowly than in the training data), but it never gets high enough to believe 
there is a significant chance that there is a problem. 
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Figure 3-19. Temperature data validation in no-error case 

 

Figure 3-20. Estimating broken sensor/actuator 

 

Figure 3-21 and Figure 3-23 present two other scenarios where there are errors to detect. In the 
first case, the temperature sensor is broken; in the second, the thermostat itself is broken. In 
both cases, we see that the system can fairly rapidly detect that the data is improbable and can 
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make reasonable estimates of the actual values. Figure 3-22 and Figure 3-24 show the estimates 
of error probabilities. 

 

 

Figure 3-21. Broken temperature sensor scenario 

 

Figure 3-22. Probabilistic estimates of broken thermostat 
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Figure 3-23. Broken thermostat scenario 

 

 

Figure 3-24. Probabilistic estimates of broken thermostat 

Figure 3-25 is an example of three villages each responding to a poll. In this case, there are no 
arrows in the figure as the links are undirected, making it a Markov model instead of a 
Bayesian model. An advantage of Figaro is that is makes it simple to encode both kinds of 
models in the same framework. Figure 3-26 shows the graphical probabilistic model that is 
derived in this situation, which has a combination of undirected and directed links, again 
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something that Figaro supports naturally. This model is actually simpler than it could be as we 
have made no attempt to model dynamics over time like we did in the thermostat case. This is 
not especially complex to do programmatically, but makes the figure much more complicated. 

 

Figure 3-25. Three-Village Polling Scenario 
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Figure 3-26. Graphical Probabilistic Model of the Three-Village Polling Scenario 

Finally, the Figaro code that describes this model is shown in Figure 3-27. As noted above, this 
code is still generated by hand, but this is not especially cumbersome once one knows the 
Figaro language, and we expect to automate even this in the future. Note that there are some 
hard-coded parameters in the model. These can be hard-coded if there is a domain expert to 
specify them, but they can also be learned using Figaro’s built-in learning mechanisms. 
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Figure 3-27. Figaro code for three-village polling scenario 

3.4. Application to Multiple Scientific Domains 

3.4.1. Technical Issues Involved in Application to Multiple Scientific Modeling 
Domains 

As we applied MAT to data in new scientific domains, we found a number of extensions 
necessary to maximize the applicability of MAT in those domains. In particular, we added 
support for handling:  

 Different time scales 

 Different types and scales of data 

 Datasets that are significantly larger than we have encountered in social science models 

We describe these three efforts in the following sections. 

Handling Time 

As we began to apply MAT to scientific domains beyond social science, and to certain social 
science datasets, we found the biggest hurdles were associated with importing and visualizing 
data in very different time scales. To address these issues, we improved and generalized how 
we handle time within MAT.  
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MAT datasets are time series. The Java Date class was used to represent the time value (the x-
axis). This was convenient because there are built-in methods in Java to handle this type and 
perform calculations on it, but it can represent a small range of possible time values. For 
example, Java Dates cannot consistently handle time values before 1970 and cannot handle 
virtual or relative time values, such as microseconds or nanoseconds, that might be used in 
physical experiments. 

To expand our ability to handle a full range of possible time values, we created an extensible, 
unit-neutral time representation system. MAT now supports data in microseconds, 
nanoseconds, and femtoseconds, milliseconds, years, and provides the user the ability to add 
their own times scales (e.g., geologic time). Any historic time value, including B.C. values, can 
be handled. The system supports all algebraic operations with time amounts and conversion and 
comparison between different time units. Data series can now start from an arbitrary zero point, 
which is better suited to scientific experiments than the previous method of starting at a specific 
date. 

Making these improvements required wide-ranging changes and enhancements that affected the 
whole application and virtually every section of code in the project was involved. For example, 
the data import window and features required update. This window was expanded to handle the 
new range of time data and types (such as arbitrary reference times and frequency-based time 
intervals).  

Handling New Types and Scales of Data 

One of the biggest problems we encountered when handling new types of data was how to 
visualize the labels for the data in a clear, readable manner. To solve this problem, we made 
several improvements to the Y-axis in the data visualization to make it more readable and 
informative. The algorithm picks “reasonable” increments approximating the actual range of 
the data series (for example, changes of 1, 2, 5, or 10 units), then formats them in a human-
readable way for display on the Y axis. The values are then formatted in one of several ways, 
such as exponential format. Figure 3-28 and Figure 3-29 show examples of this new 
functionality. Figure 3-28 shows how MAT has converted the Y-axis labels to suitable 
exponential notation. Figure 3-29 shows a variety of different data scales and types, including 
dollars, percentages, and a variety of value ranges being handled, such as by turning 
“4,500,000” into “4.5 M.” 
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Figure 3-28: Conversion of Y-axis labels to exponential notation 
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Figure 3-29: Examples of intelligent labeling of the Y-axis in MAT 

Scaling to More Data 

Since MAT may be used by analysts from a variety disciplines, it is important to provide 
scalability in the amount of data that MAT can display. We explored various improvements to 
efficiently display data within MAT. These included using hardware-based graphics renderers 
(i.e., OpenGL), avoiding slower rendering commands in favor of faster ones, and selectively 
drawing subsets of the data if there is no effect on the resulting visualization. These speed 
improvements make it possible to visualize and interact with larger amounts of data. We will 
continue to consider how to most efficiently visualize data during future development to make 
MAT useful to the broadest audience possible. 

3.4.2. New Domains 

We identified an initial test case—the evaluation of Electroencephalography (EEG) data. EEG 
is gathered using a mesh of sensors that record electrical activity on the scalp that is indicative 
of neural activity. EEG data is time series data used to understand the human brain, so is a 
practical use case for MAT. In addition, because individual sensors can be applied improperly, 
throwing off the data for that sensor, it has the potential to be a useful test case for our data 
validation effort. 
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We found freely available simulated EEG data in CSV format at http://www.grid-
tools.com/resources/test_data_sets.php. We also found EEG data from an experiment of rats’ 
reactions to stimuli and from a Grand Mal seizure at 
http://www.vis.caltech.edu/~rodri/data.htm that was in a text format that we could convert into 
CSV format. We imported these data sources into MAT for exploration and evaluation. Figure 
3-30, Figure 3-31, and Figure 3-32 show these data sources being analyzed in MAT. 

 

Figure 3-30: Simulated EEG data being analyzed in MAT 

 

Figure 3-31: Rat EEG data being analyzed in MAT 
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Figure 3-32. EEG data from a Grand Mal seizure 

3.5. Software Improvements 

3.5.1. Improvements to Usability 

One of our ongoing goals is to ensure that the MAT tool is actually useful to and usable by the 
scientific community. So, while most of this effort is focused on novel science, we are also 
constantly striving to ensure that the MAT software provides a usable framework for getting 
this science out to the community. To this end, we are improving the user interface for MAT 
with a focus on more customizability and better support for analyzing data and models across 
multiple types of analysis. For example, we enable users to view the validation and data 
analysis panes at the same time and to highlight and center on a feature in the validation pane 
when it is clicked on in the data visualization pane. 

We improved the graphical user interface by using Charles River’s Metronome framework. 
This framework is built on top of the same Equinox libraries that the popular Eclipse 
Development Environment uses. In addition to increased robustness, the framework provides 
facilities for rearranging user interface components, providing the user with more flexibility 
when using MAT. For example, if the names of the data series are long, then they could be cut 
off in the user interface, but after rearranging the components, the names are fully visible (see 
Figure 3-33). The Metronome framework also provides functionality for undo and redo, so the 
user can easily correct mistakes.  
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Figure 3-33: Changing pane sizes and layouts in the new Metronome-enhanced MAT 

We also improved the MAT project file format so that changes in the user interface (e.g., color 
and layout of a data series) can be persisted after the MAT application is closed. 

3.5.2. Improvements in Handling Missing Values 

To provide a clearer picture to the user, it is important to provide information about what data 
was used in an analysis.  It is common for data to have missing values that could influence the 
results, so improvements were made to show how many data points were used in an analysis.  
Furthermore, some analyses have a temporal offset as input which can change the number of 
values used for a calculation.  For example, when performing the correlation of two time series 
with a temporal offset, the following screenshot lets the user know that with no temporal offset 
that nine points were used in the correlation calculation and there was one missing value.   
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By increasing the temporal offset to one, we now have two missing values.   

 

3.5.3. Improvements in Handling Large Datasets 

To increase rendering speed so that large datasets can be displayed in MAT, the newest stable 
release of the graphics library used by MAT (Processing) was introduced.  We also added 
support for hardware acceleration and added a “smart” downsampling mechanism such that not 
all data points are drawn on the screen—only those that need to be given the screen resolution.  
When viewing datasets with hundreds of thousands of points, only a small subset need to be 
drawn in practice. 

Overall, while exact performance depends on the machine’s speed, these improvements 
allowed for better handling of datasets with millions of data points.  This will help make MAT 
useful in a broader array of domains.   

3.5.4. Data Synthesis Tool 

To identify non-trivial predictive/causal relationships in data when the relationship is not 
between two raw data streams, but between manipulations of those streams, we developed a 
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data synthesis tool. For instance, variable X might increase with the log of variable Y. Standard 
correlation analyses, even when temporal offsets are accounted for, do not find these 
relationships. Therefore, we added the ability to create new data series by manipulating and 
combining existing data series. For instance, a new data series can be created that is the average 
of other data series, and this new data series can be analyzed for its relationship to other events 
in the data. This enables MAT to express (and learn) causal models such as, “whenever the sum 
of the percentage of people unemployed and people who are unhappy with their job crosses a 
threshold….”  

3.5.5. Visualizing Validation Results 

The validation visualization shows whether the causal model was supported by the empirical 
data. As shown in Figure 3-34, the green events are effects that are supported by a cause. 

 

Figure 3-34: Events supported by a cause are displayed in green 

In simple examples, it is easy to understand which cause supports each effect, but in more 
complex causal models, this may not be so clear. Therefore, we modified the visualization to 
include arrows showing the valid causal relationships. For example, in Figure 3-35, the user 
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selected the causal relationship in the causal model, which displays the valid examples of that 
causal relationship as arrows pointing from cause to effect. This enables the user to quickly and 
easily see the relationship.  

 

Figure 3-35: Causes and effects are connected with arrows 

3.5.6. Comparison of Competing Models 

The causal relationship between two concepts is not always clear. Therefore, MAT enables the 
user to create multiple causal models for comparison. The screenshot in Figure 3-36 shows a 
simple example where the user is unsure whether Concept A causes B or vice versa. Both 
causal models can be created and validated using the same empirical data. In this example, it is 
clear that the causal model where Concept B causes A is the better of the two models.  
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Figure 3-36: Model comparison user interface 

The causal relationship can be explored by selecting the nodes in the graph to show the valid 
causal relationships. Figure 3-37 shows the MAT screenshot that demonstrates this 
relationship. An important challenge when including multiple causal models is to ensure that it 
is clear to the user when a node in a different model represents the same concept. Therefore, 
when a concept is selected in one causal model, it also appears as selected in all other causal 
models that use this concept. The management of concepts in an intuitive way, where the user 
has both concepts common across models and unique to a single model, is under development.  
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Figure 3-37: Node B selected to show causal relationships 

3.5.7. Exploration of Causal Models Using Undo and Redo 

To encourage the exploration of causal models, actions performed on the models can be 
undone. Figure 3-38 shows the MAT screenshot with the results after validating the model with 
data. In the bottom row of the timeline chart, the green features are supported by evidence, 
while the red ones are not. 
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Figure 3-38: Validated model showing evidence for features 

If the user wanted to see how the model changed using an OR logic node instead of an AND 
logic node, they can change that node. Figure 3-39 shows the automatic update of the 
validation. 
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Figure 3-39: Node changed from AND to OR and results on evidence 

The undo and redo operators in the toolbar enables the user to switch back and forth between 
the previous and current version of the causal model. The user can continue to make 
adjustments to the model to see how it changes the data validation and then use the undo 
operator to return to the original version of the model. This provides another way for the user to 
explore their causal models and make model adjustments to see the influence on validation 
results. 

3.5.8. Graphical Tool for Specifying Constraints on Causal Relationships 

One of the challenges that occur when describing causal models is how to make it possible 
(and, ideally, easy) to specify the temporal constraints on a causal link. For instance, if the 
hypothesis is that A (e.g., unemployment) leads to B (e.g., crime), and the data indicates that 
there is a jump in crime after a spike in unemployment, the temporal distance between A and B 
effects whether we want to associate the two events. If B happens 6 months after A, it could be 
counted as evidence. It B happens 6 decades after A, we probably want to treat them as 
unrelated events. Specifying these temporal constraints is difficult—the relationships are not 
simply “starts-after,” but can relate to other factors, such as when A or B ended. Our previous 
mechanism for specifying these constraints was found to be unintuitive and users requested 
additional functionality, so we updated and expanded this functionality. 

To make the creation of causal models as easy as possible, a new visualization of the causal 
relationships was developed. Now, the user can see how the cause and effect are compared 
when validating a causal relationship. For example, in the causal model in Figure 3-40, 
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Concept A causes Concept B using the simplest of causal relationships where Concept A must 
start sometime before Concept B. 

 

Figure 3-40: Causal model showing Concept A starting before Concept B 

In this causal relationship, Concept A can start and end many years (or centuries) before 
Concept B. Therefore, a more useful causal relationship includes a window that restricts when 
the cause starts relative to the start of the effect. Also, a second type of constraint can be 
included that restricts when the cause ends relative to the end of the effect. Figure 3-41 shows 
this new causal relationship. 
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Figure 3-41: Model specifying start and end windows for cause and effect 

The panel on the right enables the user to add, remove, and modify three types of causal 
constraints that compare: 

 Cause and effect start 

 Cause and effect end 

 Cause end and effect start 

The panel on the right provides a verbal description of each of the causal constraints to further 
improve the user’s understanding of the causal relationship. 

3.5.9. Handling Ambiguous Causal Models 

When an effect in the causal model has two possible causes, the user’s intentions can be 
ambiguous. For example, Figure 3-42 shows a causal model with two possible causes, but it is 
unclear if both causes must be present for the effect to occur or if one cause is sufficient. 
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Figure 3-42: Ambiguous cause for an effect 

Therefore, a warning message appears when the user includes a second cause to an effect. 
Figure 3-43 shows the warning message that notifies the user of the ambiguity. 

 

Figure 3-43: Warning message 

The user can then specify the intended relationship and the necessary logic will be put in place. 
Figure 3-44 shows the specified relationship. 

 

Figure 3-44: Disambiguated causal relationship 

If the model was changed in a way that was not the user’s intention, then the user can undo the 
operation and go back to the previous state of the causal model. 
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3.6. Evaluation and Transition 

We focused throughout the program on making MAT available to the government and 
academic research communities and to look for opportunities to use MAT on a variety of 
ongoing research efforts. We provided copies of MAT to the following institutions based on 
their requests for the software: the University of Michigan, Arizona State University, Kansas 
State University, University of California at Los Angeles, the Naval Medical Research Unit at 
Wright Patterson Air Force Base, Concordia University (Montreal), the University of 
Wisconsin, the University of Maryland, and the Air Force Research Laboratory’s Human 
Effectiveness Directorate, the Intelligence Advanced Research Projects Agency (IARPA), the 
Joint Advanced Warfighting Division (JAWD), Sandia National Labs, Los Alamos National 
Laboratory, and Lockheed Martin’s ICEWS team. 

We also published the following papers over the course of the project: 

 Amy Sliva, Scott Neal Reilly, “A Big Data Methodology for Bridging Quantitative and 
Qualitative Political Science Research,” American Political Science Association 
(APSA) 2014, Washington, DC (2014) 

 Amy Sliva, Scott Neal Reilly, Randy Casstevens, John Chamberlain, “Tools for 
Validating Causal and Predictive Claims in Social Science Models,” 6th International 
Conference on Applied Human Factors and Ergonomics (AHFE) 2015, Las Vegas, NV 
(2015) 

 Amy Sliva, Scott Neal Reilly, Randy Casstevens, John Chamberlain, “Validating 
Causal and Predictive Claims in Sociocultural Models” in Denise Nicholson, CDR 
Joseph Cohn, LT David Combs, and Sae Schatz (eds.), “Modeling sociocultural 
influences on decision making” (Forthcoming) 

As a final note, MAT received a nomination from the American Political Science Association 
(APSA) for Best Statistical Software of 2015.  The awards are to be made in September 2015. 

4. Recommendations for Future Research 

Understanding causal relationships in the world is one of the fundamental quests of mankind. It 
is only by understanding how the world (the physical world, the social world, etc.) works 
causally that we can effect change—whether that change is curing diseases, reducing violence 
and poverty, or engaging in successful military missions. Many causal relationships are known 
and well understood, but others are much more subtle, complex (e.g., in the case of socio-
political relationships), or, especially when dealing with adversaries, obscure. In hard-science 
domains, we are able to use controlled experiments to identify and tease apart causal 
relationships in the world.  Soft sciences (e.g., politics, social science, economics), however, do 
not typically have this luxury. Similarly, military planning domains, including for both kinetic 
and non-kinetic operations, also fail to provide opportunities for controlled experiments. That 
does not mean that understanding causal processes is impossible in these domains; we just need 
to develop more sophisticated tools to help extract and validate causal theories using 
observational data where we cannot rely on the existence of experimental data. 
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We have developed the Model Analyst’s Toolkit (MAT) to help build, refine, and validate 
causal and predictive models of a wide range of phenomena. For instance, MAT has been used 
on a range of models from socio-political models to physiological models to business models. 
One of the fundamental gaps in MAT’s capabilities, however, is that MAT analyzes time-series 
data to reason about causal relationships.  This is obviously useful when such data is available, 
but we have found that more often than not it is not available. For instance, social scientists 
gathering survey data will often gather data from many people, and sometimes from many 
places, but often at only a single point in time (or at a small number of points in time). If we 
want to understand, say, whether joining a particular group or being in prison causes 
radicalization or whether radicalization leads to joining particular groups or spending time in 
prison, simple correlational models will not help. If we had temporal data of an individual’s 
level of radicalization over time and could relate that to when they joined a particular radical 
group or spent time in prison, we could start to tease apart cause from effect.  But if all we 
know is the state of affairs at a given point in time, understanding which are the causes and 
which are the effect becomes much more challenging—but since most data is of this form, it is 
also that much more useful.  

Even in domains like medicine, the long-term longitudinal studies necessary for sound time-
series based analyses are rare and, by definition, require significant amounts of time before they 
provide results. Instead, it is common for observational studies that look at correlations 
between, say, heart health and drinking red wine to drive academic articles, press reports, and 
the behavior of many people, even though the causal links (and, often, explicit or implicit 
claims of such causal links) in such observational studies are not rigorously evaluated. In 
addition, in domains like medicine (and other experimental sciences), using observational data 
to find likely causal relationships can be a step towards designing formal experiments that 
focus on gaining a deeper understanding of phenomena that are first identified in the 
observational data. 

If we could extend the functionality of MAT to support the causal analysis of data that is not in 
time-series form, and combine this with the existing temporal analyses, we believe we can 
dramatically increase the usefulness of MAT. We also believe that the scientific foundations 
that will enable this sort of extension are recently becoming available. For instance, recent 
developments coming out of the field of Uncertainty in AI show significant promise for non-
temporal causal analysis. In addition, insights from ensemble machine learning and mixed 
initiative systems can be applied in novel ways to the problem of reasoning about causality 
from observational data, combining the strengths of a variety of automated analysis techniques 
and human expertise to achieve improved results. Not only will this enhanced software 
workbench open the door for researchers to assess causal relationships in their non-time-series 
data, but it will also enable them to combine evidence from a range of temporal and non-
temporal datasets into a single, rich representation of causal processes.  

Some of the questions we believe should be addressed by future research include: 

 Can we use automated analysis techniques to support the construction of causal models 
to explain and forecast events? Can we do this when only non-time-series observational 
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data is available? Can we combine results when time-series and non-time-series data is 
available? 

 Can we use automated analysis techniques to support the validation of causal models 
from observational data (in time-series and non-time-series forms)? Can we use 
automated analysis techniques to support the extraction of causal links from 
observational data? 

 Can we combine different causal modeling techniques to improve these analyses? Can 
we learn to do so better over time? 

 Can we create a mixed-initiative, user-focused software system to support the effective 
use of these analysis capabilities? 

5. Summary of Costs 

Our total budget was $928,224. While final costs remain to be completed, the breakdown of 
costs at this point in the program (which given the late date is necessarily close to the final 
numbers), is roughly 1% for travel (and associated burdening) and 99% for labor (including 
associated burdening and our contractor developer). There were no material costs on this 
project. 

Overall, we are happy to report that we completed the project on time and within budget. 
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